Compactly Epi-lipschitzian Convex Sets and Functions in Normed Spaces

نویسندگان

  • JONATHAN BORWEIN
  • YVES LUCET
چکیده

The concept of compactly epi-Lipschitzian (CEL) sets in locally convex topological spaces was introduced by Borwein and Strojwas [6]. It is an extension of Rockafellar’s concept of epi-Lipschitzian sets [36]. An advantage of the CEL property is that it always holds in finite dimensional spaces and, in contrast to its epi-Lipschitzian predecessor, makes it possible to recapture much of the detailed information available in finite dimensions. The original motivation for introducing the CEL concept was to select class of closed sets in infinite dimensions (primarily in Banach spaces) for which the Clarke tangent and normal cones [11] adequately measure boundary behavior. A number of strong results were obtained in this direction; see [3], [6], [7], [8], and references therein. At the same time it was clarified that the CEL property is not sufficient for the (weak-star) locally compactness of the Clarke normal cone at boundary points [3, Example 4.1]. To get ∗Research supported by NSERC and by the Shrum endowment of Simon Fraser University for the first author, research partly supported by the Pacific Institute for the Mathematical Sciences for the second author, and research partly supported by the National Science Foundation under grant DMS-9704751 and by an NSERC Foreign Researcher Award for the third author.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Convexity and Geodesic Metric Spaces

In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...

متن کامل

Various Lipschitz-like Properties for Functions and Sets I: Directional Derivative and Tangential Characterizations

In this work we introduce for extended real valued functions, defined on a Banach space X, the concept of K directionally Lipschitzian behavior, where K is a bounded subset of X. For different types of sets K (e.g., zero, singleton, or compact), the K directionally Lipschitzian behavior recovers well-known concepts in variational analysis (locally Lipschitzian, directionally Lipschitzian, or co...

متن کامل

Minimizing Irregular Convex Functions: Ulam Stability for Approximate Minima

The main concern of this article is to study Ulam stability of the set of ε-approximate minima of a proper lower semicontinuous convex function bounded below on a real normed space X, when the objective function is subjected to small perturbations (in the sense of Attouch & Wets). More precisely, we characterize the class all proper lower semicontinuous convex functions bounded below such that ...

متن کامل

SOME FIXED POINT THEOREMS IN LOCALLY CONVEX TOPOLOGY GENERATED BY FUZZY N-NORMED SPACES

 The main purpose of this paper is to study the existence of afixed point in locally convex topology generated by fuzzy n-normed spaces.We prove our main results, a fixed point theorem for a self mapping and acommon xed point theorem for a pair of weakly compatible mappings inlocally convex topology generated by fuzzy n-normed spaces. Also we givesome remarks in locally convex topology generate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998